

Statement of Verification

BREG EN EPD No.: 000585 Issue 01

This is to verify that the

Environmental Product Declaration provided by:

Al Ezz Dekheila Steel Co. - Alexandria (EZDK)

is in accordance with the requirements of:

EN 15804:2012+A2:2019

and

BRE Global Scheme Document SD207

This declaration is for:

Carbon steel reinforcing bar (Direct Reduced Iron production route)

Company Address

Al Ezz Dekheila Steel Co. - Alexandria (EZDK) El Dekheila Alexandria 21537 Egypt

Signed for BRE Global Ltd

07 May 2024

Date of First Issue

Emma Baker

Operator

07 May 2024

Date of this Issue

06 May 2027

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit $\underline{www.greenbooklive.com/terms}.$

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX.

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: <u>Enquiries@breglobal.com</u>

BRE/Global

Environmental Product Declaration

EPD Number: **000585**

General Information

EPD Programme Operator	Applicable Product Category Rules							
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE 2023 Product Category Rules (PN 514 Rev 3.1) for Type III environmental product declaration of construction products to EN 15804:2012+A2:2019.							
Commissioner of LCA study	LCA consultant/Tool							
UK CARES Pembroke House 21 Pembroke Road Sevenoaks Kent, TN13 1XR UK	CARES EPD Tool SPHERA SOLUTIONS UK LIMITED The Innovation Centre Warwick Technology Park Gallows Hill, Warwick Warwickshire CV34 6UW www.sphera.com							
Declared/Functional Unit	Applicability/Coverage							
1 tonne of carbon steel reinforcing bars manufactured by the Direct Reduced Iron production route as used within concrete structures for a commercial building.	Manufacturer-specific product.							
EPD Type	Background database							
Cradle to Gate with Module C and D and Options	GaBi							
Demonstration of Verification								
CEN standard EN 18	5804 serves as the core PCR ^a							
Independent verification of the declaration of the	ation and data according to EN ISO 14025:2010 ⊠ External							

(Where appropriate b)Third party verifier: Pat Hermon

- a: Product category rules
- b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A2:2019. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A2:2019 for further guidance

Information modules covered

ا	Produc	t	Const	ruction	Rel	ated to		Jse sta Iding fa			ed to		End-	of-life		Benefits and loads beyond the system boundary
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
V	$\overline{\mathbf{A}}$	$\overline{\mathbf{A}}$	\square	$\overline{\mathbf{A}}$	\square	$\overline{\mathbf{A}}$	V	V	\square	$\overline{\square}$	Ø	V	V	\square	\square	\square

Note: Ticks indicate the Information Modules declared.

Manufacturing site

Al Ezz Dekheila Steel Co. - Alexandria (EZDK) (member of CARES)

El Dekheila Alexandria 21537 Egypt

Construction Product:

Product Description

Reinforcing Steel Bar (according to product standards listed in Sources of Additional Information) that is obtained from Direct Reduced Iron (DRI), melted in an Electric Arc Furnace (EAF) followed by hot rolling.

The declared unit is 1 tonne of carbon steel reinforcing bars as used within concrete structures for a commercial building.

Technical Information

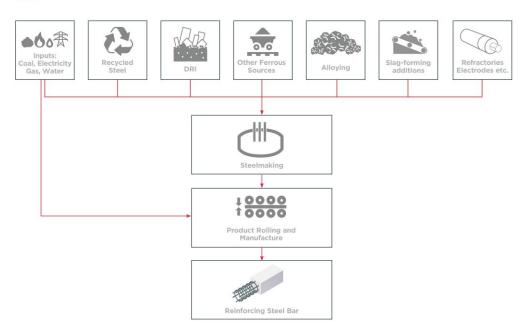
Property	Value, Unit
Production route	EAF
Density	7850 kg/m³
Modulus of elasticity	200000 N/mm ²
Weldability (Ceq)	max 0.50 %
Yield strength (as per BS 4449:2005+A3:2016)	min 500 N/mm ² – max 650 N/mm ²
Tensile strength (as per BS 4449:2005+A3:2016)	min 540 N/mm² (Tensile strength/Yield Strength ≥ 1.08)
Agt (% total elongation at maximum force as per BS 4449:2005+A3:2016)	min 5 %
Surface geometry (Relative rib area, fR as per BS 4449:2005+A3:2016)	min 0.040 for Bar Size >6mm & ≤12mm & min 0.056 for Bar size>12
Re-bend test (as per BS 4449:2005+A3:2016)	Pass
Fatigue test (as per BS 4449:2005)	Pass
Recycled content (as per ISO 14021:2016/Amd:2021)	29.3 %

Main Product Contents

Material/Chemical Input	%
Fe	97
C, Mn, Si, V, Ni, Cu, Cr, Mo and others	3

Manufacturing Process

Direct reduced iron (DRI) is produced as a first step from imported iron ore pellets. DRI is then melted in an Electric Arc Furnace (EAF) to obtain liquid metal. This is then refined to remove impurities and alloying additives can be added to give the required properties of the steel.


Hot metal (molten steel) from the EAF is then cast into steel billets before being sent to the rolling mill where they are rolled and shaped to the required dimensions for the finished bars of reinforcing steel.

The products are packed with steel wire or straps to bind the products, either of the steel ties and products do not include any biogenic materials.

Process flow diagram

Construction Installation

Processing and proper use of reinforcing steel products depends on the application and should be made in accordance with generally accepted practices, standards and manufacturing recommendations.

During transport and storage of reinforcing steel products the usual requirement for securing loads is to be observed.

Use Information

The composition of the reinforcing steel products does not change during use.

Reinforcing steel products do not cause adverse health effects under normal conditions of use.

No risks to the environment and living organisms are known to result from the mechanical destruction of the reinforcing steel product itself.

End of Life

Reinforcing steel products are not reused at end of life but can be recycled to the same (or higher/lower) quality of steel depending upon the metallurgy and processing of the recycling route.

It is a high value resource, so efforts are made to recycle steel scrap rather than disposing of it at EoL. A recycling rate of 92% is typical for reinforcing steel products

Life Cycle Assessment Calculation Rules

Declared unit description

The declared unit is 1 tonne of carbon steel reinforcing bars manufactured by the Direct Reduced Iron production route as used within concrete structures for a commercial building (i.e. 1 tonne in use, accounting for losses during fabrication and installation, not 1 tonne as produced)

System boundary

The system boundary of the EPD follows the modular design defined by EN 15804+A2. This is a cradle to gate – with Module C and D and all options EPD and thus covers all modules from A1 to C4 and includes module D as well.

Impacts and aspects related to losses/wastage (i.e. production, transport and waste processing and end-of-life stage of lost waste products and materials) are considered in the modules in which the losses/wastage occur.

Once steel scrap has been collected for recycling it is considered to have reached the end of waste state.

Data sources, quality and allocation

Data Sources: Manufacturing data of the period 01/01/2022-31/12/2022 has been provided by Al Ezz Dekheila Steel Co. (EZDK) (member of CARES).

The selection of the background data for electricity generation is in line with the BRE Global PCR. Country or region specific power grid mixes are selected from GaBi 2021 databases (Sphera 2021); thus, consumption grid mix of Saudi Arabia has been selected to suit specific manufacturing location.

Data Quality: Data quality can be described as good. Background data are consistently sourced from the GaBi 2021 databases (Sphera 2021). The primary data collection was thorough, considering all relevant flows and these data have been verified by CARES.

Data quality level and criteria of the UN Environment Global Guidance on LCA database development:

Geographical Representativeness : Good
Technical Representativeness : Very good
Time Representativeness : Good

Allocation: DRI & HBI Fines are produced as co-products from the DRI manufacturing process. These co-products are internally recycled. EAF slag and mill scale are produced as co-products from the steel manufacturing process. Impacts are allocated between the steel, the slag and the mill scale based on economic value. The revenue generated from both mill scale and EAF slag are 0.02% and 0.41% respectively, and their total is less than 1% in relation to the product based on current market prices, these co-products are of definite value and are freely/readily traded in reality. For this reason, economic allocation has been applied to the processes where these co-products arise.

Production losses of steel during the production process are recycled in a closed loop offsetting the requirement for external scrap. Specific information on allocation within the background data is given in the GaBi datasets documentation (/GaBi 6 2021/)

Cut-off criteria

On the input side all flows entering the system and comprising more than 1% in total mass or contributing more than 1% to primary energy consumption are considered. All inputs used as well as all process-specific waste and process emissions were assessed. For this reason, material streams which were below 1% (by mass) were captured as well. In this manner the cut-off criteria according to the BRE guidelines are fulfilled.

The mass of steel wire or strap used for binding the product is less than 1 % of the total mass of the product.

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

			GWP-	GWP-	GWP-	GWP-	ODP	AP	EP-
			total	fossil	biogenic	luluc	02 .	, u	freshwate r
			kg CO₂ eq	kg CO₂ eq	kg CO₂ eq	kg CO₂ eq	kg CFC11 eq	mol H ⁺ eq	kg (PO ₄) ³ eq
	Raw material supply	A1	1.16E+03	1.15E+03	0.519	0.596	1.44E-12	3.43	1.09E-03
Due divet ete se	Transport	A2	123	123	0.154	0.017	1.27E-14	4.64	3.24E-05
Product stage	Manufacturing	А3	987	986	1.13	0.330	2.17E-12	6.90	1.02E-03
	Total (of product stage)	A1-3	2.27E+03	2.26E+03	1.80	0.943	3.62E-12	15.0	2.14E-03
Construction	Transport	A4	16.8	16.7	-0.021	0.137	2.14E-15	0.049	4.97E-05
process stage	Construction	A5	237	237	0.194	0	4.16E-13	1.62	2.29E-04
	Use	B1	0	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0	0
	Repair	ВЗ	0	0	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0	0
	Operational water use	В7	0	0	0	0	0	0	0
%92 Recycling / %8	B Landfill Scenario								
	Deconstruction,	C1	2.15	2.15	0.003	4.93E-05	2.48E-16	0.003	4.10E-07
	demolition Transport	C2	40.6	40.3	-0.046	0.312	5.10E-15	0.178	1.14E-04
End of life	Waste processing	C3	0	0	0.040	0.312	0	0.170	0
	Disposal	C4	1.18	1.21	-0.035	0.004	4.70E-15	0.009	2.03E-06
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	- 1.25E+03	- 1.25E+03	2.18	-0.029	5.84E-12	-3.45	-2.16E-04
100% Lanfill Scena	rio								
	Deconstruction, demolition	C1	2.15	2.15	0.003	4.93E-05	2.48E-16	0.003	4.10E-07
End of life	Transport	C2	1.88	1.86	-0.002	0.015	2.38E-16	0.007	5.53E-06
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	14.7	15.1	-0.439	0.044	5.87E-14	0.108	2.54E-05
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	763	764	-1.33	0.018	-3.57E-12	2.11	1.32E-04
100% Recycling Sc	enario								
	Deconstruction, demolition	C1	2.15	2.15	0.003	4.93E-05	2.48E-16	0.003	4.10E-07
End of life	Transport	C2	43.9	43.6	-0.049	0.338	5.53E-15	0.192	1.23E-04
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	- 1.42E+03	- 1.42E+03	2.48	-0.034	6.66E-12	-3.93	-2.46E-04

GWP-total = Global warming potential, total; GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic; GWP-luluc = Global warming potential, land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

	not declared; MNR = describing enviro				· – maicato	1101 0350	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	o – ayyı	cgaieu)
			EP- marine	EP- terrestri al	POCP	ADP- mineral &metals	ADP- fossil	WDP	PM
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq	disease inciden e
	Raw material supply	A1	1.18	10.5	2.75	2.69E-04	1.61E+04	78.3	4.36E-0
	Transport	A2	1.18	12.9	3.31	3.77E-06	1490	0.201	7.73E-0
Product stage	Manufacturing	A3	0.643	7.02	2.06	6.13E-05	9.49E+03	290	6.21E-0
	Total (of product stage)	A1-3	3.00	30.4	8.12	3.34E-04	2.71E+04	3.69E+0 2	1.83E-0
Construction	Transport	A4	0.022	0.248	0.044	1.27E-06	223	0.145	2.72E-0
process stage	Construction	A5	0.294	3.22	0.854	3.45E-05	2.86E+03	43.0	1.93E-0
	Use	B1	0	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0	0
	Repair	B3	0	0	0	0	0	0	0
Jse stage	Replacement	B4	0	0	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0	0
%92 Recycling / %8 Landfill Scenario									
	Deconstruction,	C1	0.001	0.013	0.003	7.01E-08	28.3	0.005	1.89E-0
	demolition								
End of life	Transport Waste processing	C2 C3	0.085	0.940	0.179	2.97E-06 0	536	0.334	1.39E-0
	Disposal	C4	0.002	0.025	0.007	1.14E-07	16.0	0.130	1.07E-0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-0.716	-7.76	-2.39	2.67E-05	- 9.10E+03	25.7	-4.51E-
100% Lanfill Scen	ario								
	Deconstruction, demolition	C1	0.001	0.013	0.003	7.01E-08	28.3	0.005	1.89E-
End of life	Transport	C2	0.003	0.035	0.006	1.42E-07	24.8	0.016	3.43E-0
Liid oi iiie	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0.028	0.307	0.085	1.43E-06	201	1.62	1.34E-0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	0.438	4.75	1.46	-1.63E-05	5.57E+03	-15.7	2.76E-0
100% Recycling S	Scenario								
	Deconstruction, demolition	C1	0.001	0.013	0.003	7.01E-08	28.3	0.005	1.89E-0
End of life	Transport	C2	0.092	1.02	0.194	3.22E-06	581	0.362	1.50E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0	0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-0.817	-8.85	-2.73	3.04E-05	- 1.04E+04	29.3	-5.14E-

 $\label{eq:energy} \mbox{EP-marine} = \mbox{Eutrophication potential, fraction of nutrients reaching marine end compartment;}$

EP-terrestrial = Eutrophication potential, accumulated exceedance;

POCP = Formation potential of tropospheric ozone;

ADP-mineral&metals = Abiotic depletion potential for non-fossil resources;

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters de	escribing enviro	nmen	tal impact	S			
			IRP	ETP-fw	HTP-c	HTP-nc	SQP
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless
	Raw material supply	A1	19.5	1.09E-03	1.94E-07	5.82E-06	1.32E+03
5	Transport	A2	0.237	3.24E-05	2.01E-08	9.43E-07	11.9
Product stage	Manufacturing	А3	1.77	1.02E-03	1.68E-06	1.89E-04	509
	Total (of product stage)	A1-3	21.5	2.14E-03	1.89E-06	1.96E-04	1.84E+03
Construction	Transport	A4	0.039	4.97E-05	3.25E-09	1.89E-07	76.5
process stage	Construction	A5	2.22	2.29E-04	1.85E-07	1.96E-05	216
	Use	B1	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0
	Repair	В3	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0
%92 Recycling / %8 Landfill Scenario							
	Deconstruction, demolition	C1	0.004	4.10E-07	5.02E-10	1.63E-08	0.077
End of life	Transport	C2	0.092	1.14E-04	7.79E-09	4.56E-07	174
End of mo	Waste processing	СЗ	0	0	0	0	0
	Disposal	C4	0.018	2.03E-06	1.35E-09	1.49E-07	3.24
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	14.3	-2.16E-04	-1.98E-06	-6.76E-06	745
100% Lanfill Scena	rio						
	Deconstruction, demolition	C1	0.004	4.10E-07	5.02E-10	1.63E-08	0.077
End of life	Transport	C2	0.004	5.53E-06	3.61E-10	2.14E-08	8.51
Lina of mo	Waste processing	С3	0	0	0	0	0
	Disposal	C4	0.221	2.54E-05	1.69E-08	1.86E-06	40.5
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-8.73	1.32E-04	1.21E-06	4.13E-06	-456
100% Recycling Sc	enario						
	Deconstruction, demolition	C1	0.004	4.10E-07	5.02E-10	1.63E-08	0.077
End of life	Transport	C2	0.100	1.23E-04	8.44E-09	4.94E-07	189
	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	16.3	-2.46E-04	-2.26E-06	-7.70E-06	849

$$\begin{split} IRP &= \text{Potential human exposure efficiency relative to U235}; \\ ETP-fw &= \text{Potential comparative toxic unit for ecosystems}; \\ HTP-c &= \text{Potential comparative toxic unit for humans}; \end{split}$$

HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

material supply sport ufacturing (of product e) sport ttruction tenance acement rbishment ational energy ational water use dfill Scenario instruction, olition sport e processing osal	A1 A2 A3 A1-3 A4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3	MJ 674 6.34 2.22E+03 2.90E+03 12.4 337 0 0 0 0 0 0 0 0 0 2 0.098 28.4	MJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MJ 674 6.34 2.22E+03 2.90E+03 12.4 337 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0	MJ 1.62E+04 1.49E+03 9.49E+03 2.72E+04 223 2.86E+03 0 0 0 0 0 28.3	MJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MJ 1.62E+0 ² 1.49E+0 ³ 9.49E+0 ³ 2.72E+0 ² 223 2.86E+0 ³ 0 0 0 0 0 28.3
sport ufacturing (of product)) sport ttruction tenance dir accement rbishment ational energy ational water use dfill Scenario instruction, olition sport e processing	A2 A3 A1-3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3	6.34 2.22E+03 2.90E+03 12.4 337 0 0 0 0 0 0 0 0 0 2 0.098 28.4	0 0 0 0 0 0 0 0 0 0 0	6.34 2.22E+03 2.90E+03 12.4 337 0 0 0 0 0	1.49E+03 9.49E+03 2.72E+04 223 2.86E+03 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	1.49E+03 9.49E+03 2.72E+04 223 2.86E+03 0 0 0 0 0
ufacturing (of product e) sport sport truction tenance dir acement rbishment ational energy ational water use dfill Scenario instruction, olition sport e processing	A3 A1-3 A4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3	2.22E+03 2.90E+03 12.4 337 0 0 0 0 0 0 0 0 0 2.22E+03	0 0 0 0 0 0 0 0 0 0	2.22E+03 2.90E+03 12.4 337 0 0 0 0 0 0 0 0 0 0 0 0 0	9.49E+03 2.72E+04 223 2.86E+03 0 0 0 0 0 0 28.3	0 0 0 0 0 0 0 0 0 0	9.49E+03 2.72E+04 223 2.86E+03 0 0 0 0 0 0
(of product e) sport struction tenance sir accement rbishment ational energy ational water use dfill Scenario instruction, olition sport e processing	A1-3 A4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3	2.90E+03 12.4 337 0 0 0 0 0 0 0 0 0 28.4	0 0 0 0 0 0 0 0 0	2.90E+03 12.4 337 0 0 0 0 0 0 0 0 0 0 0 0 0	2.72E+04 223 2.86E+03 0 0 0 0 0 0 28.3	0 0 0 0 0 0 0 0 0	2.72E+04 223 2.86E+03 0 0 0 0 0 0 0
e) sport struction tenance sir accement rbishment ational energy ational water use dfill Scenario instruction, olition sport e processing	A4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3	12.4 337 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	12.4 337 0 0 0 0 0 0 0 0	223 2.86E+03 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	223 2.86E+03 0 0 0 0 0 0 0
tenance tenanc	A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3	337 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0	0 0 0 0 0 0 0 0	337 0 0 0 0 0 0 0 0	2.86E+03 0 0 0 0 0 0 0 0 0 28.3	0 0 0 0 0 0 0	2.86E+03 0 0 0 0 0 0 0 0 0 0 28.3
tenance iir accement rbishment ational energy ational water use dfill Scenario instruction, olition sport e processing	B1 B2 B3 B4 B5 B6 B7	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0
acement rbishment ational energy ational water use dfill Scenario instruction, olition sport e processing	B2 B3 B4 B5 B6 B7	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0
acement rbishment ational energy ational water use dfill Scenario instruction, olition sport e processing	B3 B4 B5 B6 B7 C1 C2 C3	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0
acement rbishment ational energy ational water use dfill Scenario instruction, olition sport e processing	B4 B5 B6 B7 C1 C2 C3	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0
rbishment ational energy ational water use dfill Scenario instruction, olition sport e processing	B5 B6 B7 C1 C2 C3	0 0 0 0 0.098 28.4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
ational energy ational water use dfill Scenario enstruction, olition sport e processing	B6 B7 C1 C2 C3	0 0 0.098 28.4	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0	0 0
ational water use dfill Scenario Instruction, Sport e processing	C1 C2 C3	0 0.098 28.4	0 0 0	0.098	28.3	0	28.3
dfill Scenario Instruction, Ins	C1 C2 C3	0.098 28.4	0 0	0.098	28.3	0	28.3
nstruction, olition sport e processing	C2 C3	28.4	0				
olition sport e processing	C2 C3	28.4	0				
sport e processing	СЗ		-	28.4	F27		507
		0			537	0	537
osal			0	0	0	0	0
	C4	2.16	0	2.16	16.1	0	16.1
e, recovery, ling potential	D	1.16E+03	0	1.16E+03	-9.21E+03	0	-9.21E+0
nstruction,	C1	0.098	0	0.098	28.3	0	28.3
sport	C2	1.38	0	1.38	24.8	0	24.8
e processing	СЗ	0	0	0	0	0	0
osal	C4	27.0	0	27.0	201	0	201
e, recovery, ling potential	D	-710	0	-710	5.63E+03	0	5.63E+03
o							
nstruction, olition	C1	0.098	0	0.098	28.3	0	28.3
sport	C2	30.7	0	30.7	582	0	582
e processing	C3	0	0	0	0	0	0
osal	C4	0	0	0	0	0	0
i (e, recovery, ing potential one of the control of	p, recovery, ing potential D astruction, C1 port C2 p processing C3	p, recovery, ing potential D -710 anstruction, C1 0.098 port C2 30.7 p processing C3 0	p., recovery, ing potential D -710 0 netruction, C1 0.098 0 port C2 30.7 0 processing C3 0 0	p, recovery, ing potential D -710 0 -710 nstruction, C1 0.098 0 0.098 port C2 30.7 0 30.7 p processing C3 0 0 0	D -710 0 -710 5.63E+03 D -710 0 0 -710 5.63E+03 D -710 0 0 0 0.098 D -710 0 0 0.098 28.3 D -710 0 0 0 0 0 0 0 0	p, recovery, ing potential D -710 0 -710 5.63E+03 0 on the port C2 30.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials;
PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

			SM	RSF	NRSF	FW
			kg	MJ net calorific value	MJ net calorific value	m³
	Raw material supply	A1	0	0	0	78.3
Droduct store	Transport	A2	0	0	0	0.201
Product stage	Manufacturing	А3	-356	0	0	290
	Total (of product stage)	A1-3	-356	0	0	3.69E+02
Construction	Transport	A4	0	0	0	0.145
process stage	Construction	A5	0	0	0	43.0
	Use	B1	0	0	0	0
	Maintenance	B2	0	0	0	0
	Repair	В3	0	0	0	0
Use stage	Replacement	B4	0	0	0	0
	Refurbishment	B5	0	0	0	0
	Operational energy use	В6	0	0	0	0
	Operational water use	B7	0	0	0	0
%92 Recycling / %8 Landfill Scenario						
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.334
	Waste processing	СЗ	0	0	0	0
	Disposal	C4	0	0	0	0.130
Potential benefits and oads beyond the system boundaries	Reuse, recovery, recycling potential	D	-564	0	0	25.7
100% Landfill Scena	rio					
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.016
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	1.62
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	356	0	0	-15.70
100% Recycling Sce	nario					
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.362
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-644	0	0	29.3

SM = Use of secondary material; RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

			HWD	NHWD	RWD
			kg	kg	kg
	Raw material supply	A1	1.47E-06	7.05	0.141
	Transport	A2	1.26E-08	0.151	1.66E-03
Product stage	Manufacturing	А3	1.11E-06	76.7	0.023
	Total (of product stage)	A1-3	2.59E-06	83.9	0.166
Construction	Transport	A4	1.12E-08	0.033	2.70E-04
process stage	Construction	A5	2.81E-07	18.1	0.017
	Use	B1	0	0	0
	Maintenance	B2	0	0	0
	Repair	В3	0	0	0
Jse stage	Replacement	B4	0	0	0
	Refurbishment	B5	0	0	0
	Operational energy use	В6	0	0	0
	Operational water use	В7	0	0	0
%92 Recycling / %8 Landfill Scenario					
	Deconstruction, demolition	C1	2.42E-10	0.006	3.10E-05
End of life	Transport	C2	2.58E-08	0.078	6.46E-04
ind of file	Waste processing	C3	0	0	0
	Disposal	C4	1.70E-09	80.1	1.68E-04
otential benefits and ads beyond the stem boundaries	Reuse, recovery, recycling potential	D	1.12E-06	-18.1	0.150
100% Landfill Scena	rio				
	Deconstruction, demolition	C1	2.42E-10	0.006	3.10E-05
End of life	Transport	C2	1.25E-09	0.004	3.00E-05
	Waste processing	C3	0	0	0
	Disposal	C4	2.13E-08	1.00E+03	0.002
Potential benefits and oads beyond the system boundaries	Reuse, recovery, recycling potential	D	-6.83E-07	11.0	-0.092
100% Recycling Sce	enario				
	Deconstruction, demolition	C1	2.42E-10	0.006	3.10E-05
End of life	Transport	C2	2.79E-08	0.085	6.99E-04
	Waste processing	СЗ	0	0	0
	Disposal	C4	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	1.27E-06	-20.6	0.171

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

Other environme	ental information d	escri	oing outpo	ut flows –	at end of I	ife		
			CRU	MFR	MER	EE	Biogenic carbon (product)	Biogenic carbon (packaging)
			kg	kg	kg	MJ per energy carrier	kg C	kg C
	Raw material supply	A1	0	0	0	0	0	0
Draduot ataga	Transport	A2	0	0	0	0	0	0
Product stage	Manufacturing	А3	0	0	0	0	0	0
	Total (of product stage)	A1-3	0	0	0	0	0	0
Construction	Transport	A4	0	0	0	0	0	0
process stage	Construction	A5	0	-18.8	0	0	0	0
	Use	B1	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0
	Repair	В3	0	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0	0
-	Refurbishment	B5	0	0	0	0	0	0
	Operational energy use	В6	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0
%92 Recycling / %8 Landfill Scenario								
	Deconstruction, demolition	C1	0	-920	0	0	0	0
Ford of Pfo	Transport	C2	0	0	0	0	0	0
End of life	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Landfill Scena	rio							
	Deconstruction, demolition	C1	0	0	0	0	0	0
End of life	Transport	C2	0	0	0	0	0	0
End of mo	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Recycling Sce	nario							
	Deconstruction, demolition	C1	0	-1.00E+03	0	0	0	0
End of life	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenarios and add	itional technical information							
Scenario	Parameter	Units	Results					
	On leaving the steelworks the reinforcing steel products are they are converted into constructional steel forms suitable for transported on to the construction site, including provision of transport distance for rolled steel to fabricators and road transport construction forms to site are assumed to be 100 km and 25 Only the one-way distance is considered as it is assumed the optimise their distribution and not return empty in modules be	or the installation sit of all materials and p nsport distance for 50 km, respectively. nat the logistics com	e, then products. Road steel					
A4 – Transport to the building site	Truck trailer - Fuel	litre/km	1.56					
	Distance	km	350					
	Capacity utilisation (incl. empty returns)	%	85					
	Bulk density of transported products	kg/m ³	7850					
A5 – Installation in the building	all materials, products, and energy, as well as waste processing up to the end-of-waste state disposal of final residues during the construction stage. Installation of the fabricated product into the building is assumed to result in 10% wastage (determined based on typical installati losses reported by the WRAP Net Waste Tool [WRAP 2017]). It is assumed that fabrication requires 15.34 kWh/tonne finished product, and that there is a 2% wastage associated with process.							
	Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms	%	2					
	Energy Use - Energy per tonne required to fabricate construction steel forms	kWh	15.34					
	Waste materials from installation wastage	%	10					
B2 – Maintenance	No maintenance required							
B3 – Repair	No repair process required							
B4 – Replacement	No replacement considerations required							
B5 – Refurbishment	No refurbishment process required							
Reference service life	Reinforcing steel products are used in the main building struwill equal the lifetime of the building. The Concrete Society BS EN 1990, which specifies "building structures and other lifetime of 50 years (The Concrete Society, n.d.; BSI, 2005) EPD is assumed to be 50 years.	follows the definition common structures	ns provided in " as having a					
B6 – Use of energy; B7 – Use of water	No water or energy required during use stage related to the	operation of the bu	ilding					

C1 to C4 End of life,	The end-of-life stage starts when the construction product is replaced, dismantled or deconstructed from the building or construction works and does not provide any further function. The recovered steel is transported for recycling while a small portion is assumed to be unrecoverable and remains in the rubble which is sent to landfill. 92% of the reinforcing steel is assumed to be recycled and 8% is sent to landfill [STEELCONSTRUCTION.INFO 2012]. Once steel scrap is generated through the deconstruction activities on the demolition site it is considered to have reached the "end of waste" state. No further processing is required so there are no impacts associated with this module. Hence no impacts are reported in module C3.		
	Waste for recycling - Recovered steel from crushed concrete	%	92
	Waste for energy recovery - Energy recovery is not considered for this study as most end of life steel scrap is recycled, while the remainder is landfilled	-	-
	Waste for final disposal - Unrecoverable steel lost in crushed concrete and sent to landfill	%	8
	Portion of energy assigned to rebar from energy required to demolish building, per tonne	MJ	24
	Transport to waste processing by Truck - Fuel consumption	litre/km	1.56
	Transport to waste processing by Truck – Distance	km	463
	Transport to waste processing by Truck – Capacity utilisation	%	85
	Transport to waste processing by Truck – Density of Product	kg/m³	7850
	Transport to waste processing by Container ship - Fuel consumption	litre/km	0.0041
	Transport to waste processing by Container ship - Distance	km	158
	Transport to waste processing by Container ship – Capacity utilisation	%	50
	Transport to waste processing by Container ship – Density of Product	kg/m³	7850
Module D	It is assumed that 92% of the steel used in the structure is recovered for recycling, while the remainder is landfilled. "Benefits and loads beyond the system boundary" (module D) accounts for the environmental benefits and loads resulting from net steel scrap that is used as raw material in the EAF and that is collected for recycling at end of life. The balance between total scrap arisings recycled from fabrication, installation and end of life and scrap consumed by the manufacturing process (internally sourced scrap is not included in this calculation). These benefits and loads are calculated by including the burdens of recycling and the benefit of avoided primary production. A large amount of net scrap is generated over the life cycle as the Direct Reduced Iron (DRI) production route is primarily from virgin sources and there is a very high end of life recycling rate for reinforcing steel products. As a result, module D reports the credits associated with the scrap output.		
	The resulting scrap credit/burden is calculated based on the global "value of scrap" approach (/worldsteel 2011).		
	Recycled Content	kg	293
	Re-used Content	kg	0
	Recovered for recycling	kg	920
	Recovered for re-use	kg	0
	Recovered for energy	kg	0

Summary, comments and additional information

Interpretation

Direct Reduced Iron based reinforcing steel product of AI Ezz Dekheila Steel Co. (EZDK) (member of CARES) is made via the EAF route. The bulk of the environmental impacts and primary energy demand is attributed to the manufacturing phase, covered by information modules A1-A3 of EN 15804+A2.

The interpretation of the results has been carried out considering the methodology- and data-related assumptions and limitations declared in the EPD. This interpretation section focuses on the environmental impact categories as well as the primary energy demand indicators only.

Global Warming Potential (GWP)

The majority of the life cycle GWP impact occurs in the production phase (A1-A3). A1-A3 impacts account for 88.40% overall life cycle impacts for this category. The most significant contributions to production phase impacts are: the upstream production of raw materials used in the steelmaking process, generation/supply of electricity and the production/use of fuels on site. Fabrication, installation and the end-of-life processes covered in C1-C4 make a minimal contribution to GWP. For overall climate change impacts, carbon dioxide emissions account for the majority of impacts with methane being the second most significant contributor.

Ozone Depletion Potential (ODP)

The majority of impacts are associated with the production phase (A1-3). Significant contributions to production phase impact come from the emission of ozone depleting substances during the upstream production of raw materials/preproducts as well as those arising from electricity production. Module D shows a very small credit even though scrap burdens are being assessed in this phase. This is explained because ODP emissions are linked to grid electricity production used.

Acidification Potential (AP)

Acidification potential is generally driven by the production of sulphur dioxide and nitrogen oxides through the combustion of fossil fuels, particularly coal and crude oil products. The majority of the lifecycle AP impact occurs in the production phase (A1-A3), similar to GWP. The major contributors to production phase AP impacts comes from energy resources used in the production of the raw materials and pre-products for the steelmaking process and from transportation. Fabrication, installation and the end-of-life processes classed under C1-C4 make minimal contributions.

Eutrophication Potential (EP)

Eutrophication is driven by nitrogen and phosphorus containing emissions and as with GWP and AP is often strongly linked with the use of fossil fuels. The major eutrophication impacts occur in the production phase (A1-A3). Significant contributions to production phase impact comes from the production of raw materials and transport. Fabrication, installation and the end-of-life processes classed under C1-C4 again make minimal contributions.

Photochemical Ozone Creation Potential (POCP)

POCP tends to be driven by emissions of carbon monoxide, nitrogen oxides (NOx), sulphur dioxide and NMVOCs. The production phase is the dominant phase of the lifecycle with regards to POCP impacts. Again, these are all emissions commonly associated with the combustion of fuels. Significant contributors to POCP are the upstream production of raw materials/pre-products and transport, directly linked to fossil fuel combustion. It should be noted that the impacts for steel recycling in module D is almost of the same magnitude as the production phase impacts.

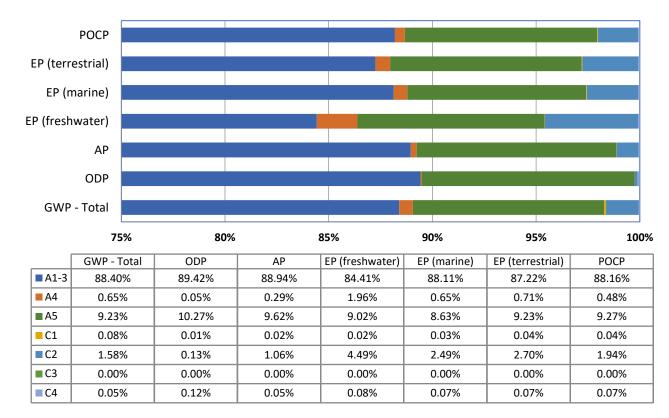


Figure 1 - shows the relative contribution of each life cycle stage to different environmental indicators for the carbon steel reinforcing bars manufactured by the Direct Reduced Iron production route

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A2:2019. London, BSI, 2019.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO BS EN ISO 14040:2006+A1:2020. London, BSI, 2020.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006+A2:2020. London, BSI, 2020.

Demolition Energy Analysis of Office Building Structural Systems, Athena Sustainable Materials Institute, 1997

Sphera Solutions GmbH; GaBi Software System and Database for Life Cycle Engineering, Sphera Solution GmbH, Leinfelden-Echterdingen, 2021.

GaBi 10, Content Version 2021.2: Documentation of GaBi 10, Content Version 2021.2: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 2021. (http://documentation.gabi-software.com/)

International Energy Agency, Energy Statistics 2013. http://www.iea.org

Kreißig, J. und J. Kümmel (1999): Baustoff-Ökobilanzen. Wirkungsabschätzung und Auswertung in der Steine-Erden-Industrie. Hrsg. Bundesverband Baustoffe Steine + Erden e.V.

U,S, Geological Survey, Mineral Commodity Summaries, Iron and Steel Slag, January 2014

SteelConstruction.info; The recycling and reuse survey, 2012 http://www.steelconstruction.info/The_recycling_and_reuse_survey

Sustainability of construction works - Environmental product declarations - Methodology for selection and use of generic data; German version CEN/TR 15941

REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

CARES SCS Sustainable Constructional Steel Scheme v9 – Operational assessment schedule - https://www.carescertification.com/certified-companies/search - Certificate number of conformance to SCS v9 at the time of LCA study – 1892.

CARES SRC Steel for the Reinforcement of Concrete Scheme. Appendix 1 – Quality and operations assessment schedule for carbon steel bars for the reinforcement of concrete including inspection and testing requirements - https://www.carescertification.com/certified-companies/search - Certificate number of conformance to BS4449 at the time of LCA study – 040802

BS 4449:2005+A3:2016 Steel for the reinforcement of concrete. Weldable reinforcing steel. Bar, coil and decoiled product. Specification.

DIN 488-1:2009 - Reinforcing steels - Part 1: Grades, properties, marking.

DIN 488-2:2009 - Reinforcing steels - Reinforcing steel bars.

DIN 488-2:2009 - Reinforcing steels - Reinforcing steel in coils, steel wire.

ASTM A615/A615M – 22 - Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.

ASTM A706/A706M – 22 - Standard Specification for Deformed and Plain Low-Alloy Steel Bars for Concrete Reinforcement.

ASTM A510/A510M – 20 - Standard Specification for General Requirements for Wire Rods and Coarse Round Wire, Carbon Steel, and Alloy Steel

ISO 6935-2:2019 - Steel for the reinforcement of concrete - Part 2: Ribbed bars.

EN 10080:2005 Steel for the reinforcement of concrete. Weldable reinforcing steel. General

NF A35-080-1:2020 - Aciers pour béton armé - Aciers soudables - Partie 1 : barres et couronnes.

CSA G30.18:21 - Carbon steel bars for concrete reinforcement.

BDS 9252:2007 - Steel for the reinforcement of concrete - Weldable reinforcing steel B500.

GOST R 52544-2006 - Weldable deformed reinforcing rolled products of A500C and B500C classes for reinforcement of concrete constructions. Specifications.

GOST 34028-2016 - Reinforcing rolled products for reinforced concrete constructions. Specifications

ST 009: 2011 - Technical specification for steel products used as reinforcement: requirements and performance criteria

DSTU 3760: 2019 - Rolled products for reinforcement of Ferroconcrete structures: General specifications

ELOT 1421-3: 2007 - Steel for the reinforcement of concrete- Weldable reinforcing steel-Part 3: Technical class B500C

JS 33 2014 - Jamaican Standard Specification for Hot Rolled Steel Bars for the Reinforcement of Concrete

ES: 262-1: 2015 - Steel for the reinforcement of concrete - Part 1: Plain bars

ES: 262-2: 2021 - Steel for the reinforcement of concrete - Part 2: Ribbed bars